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Abstract: Current deep learning methods for fluorescence image restoration necessitate numerous 

well-aligned image pairs for training. We develop an unsupervised learning framework for high-

fidelity fluorescence image restoration without the laborious work of image annotation and 

registration.  

 

1. Introduction 

Deep neural networks (DNNs) [1] have shown its powerful capabilities in optical microscopy and play an important 

role in promoting biological research [2]. One of the most common applications of deep learning in fluorescence 

microscopy is image restoration, i.e., reconstructing high-quality images from degraded images. Mathematically, 

this image-to-image transformation task can be modeled as nonlinear pixel-wise regression that maps a pixel 

intensity in the source image to another reasonable pixel value in the target image with reference of neighborhood 

information [3]. Many network architectures have been demonstrated to be versatile for image-to-image 

transformation [4-6]. However, these DNNs are based on supervised learning and vast amounts of images and 

corresponding annotations are needed to be collected. The success of these networks usually needs time-consuming 

data acquisition and laborious annotations and registrations [7]. 

Recently, the invention of cycle-consistent generative adversarial networks (CycleGAN) [8] makes unsupervised 

training of convolutional neural networks (CNNs) possible. But the applications of CycleGAN are confined to 

simple classification tasks like segmentation [9] because complex regression would confuse the network and 

mislead it to converge to biased mappings. 

To advance the feasibility of this unsupervised learning framework in optical microscopy, here, we introduce 

content-preserving cycle-consistent generative adversarial network (c2GAN) for unsupervised fluorescence image 

restoration. We demonstrate its competitive performance in several image restoration tasks by comparison with the 

ground truth, as well as the results of conventional CNN trained with paired training data. 

2. Methods and results 

CycleGAN is an emerging deep learning framework based on unsupervised learning, which simultaneously trains a 

pair of reciprocal generative adversarial networks (GANs). After proper training, one image in the source domain 

could be mapped back after the sequential processing of the twin GANs (as shown in Fig. 1(a)). However, some  
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Fig. 1. Schematic of c2GAN. (a) A and B represent the source domain and the target domain, respectively. A forward GAN (G) and a backward 

GAN (F) are simultaneously trained to establish a pair of reciprocal mappings. The cycle-consistency loss (Lcycle) and structural loss (Lcons) are 

enforced to guarantee cycle consistency and high fidelity, respectively. (b) The GANs are likely to converge to biased mappings without the 
structural loss. 
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biased mappings could be learned because the original objective function is not tight enough (as shown in Fig. 1(b)). 

To shrink the solution space to a tighter range and exclude unwanted solutions, we impose an additional structural 

constraint term to confine the location of the object in the output image. This reinforced objection function can 

guarantee fast and stable convergence and accurate mappings in most conditions. 

We test the performance of c2GAN on a typical denoising task that maps low-SNR (signal to noise ratio) images 

of Planaria, a kind of light-sensitive worm commonly used in the research of cell regeneration, to high-SNR images 

to avoid phototoxicity caused by high excitation dose. The training data is based on the released data of Weigert et 

al [5] and the images are processed to ensure that there are no aligned images in the two domains. The test results 

are shown in Fig. 2(a) that the output image of c2GAN is quite similar to the corresponding ground truth. We also 

compare the performance of c2GAN with that of conventional supervised CNN [5]. The high-SNR images are better 

restored by c2GAN because no saturation occurs. For better visualization, we plot the intensity distribution 

histograms of the images as shown in Fig. 2(b). It is clear that the intensity distribution is well preserved and no 

pixel saturation and distribution deformation occur, which demonstrates c2GAN’s capability of high-fidelity 

fluorescence image restoration. This method can be extended to other applications that can be modeled as pixel-wise 

regression. Our framework opens up new possibilities for the use of deep unsupervised learning in the field of 

optical microscopy. 

c2GAN GTInput Supervised(a) (b)

0 65535

N
o

rm
a

liz
e

d
 p

ro
b

a
b

ili
ty

N
o

rm
a

liz
e

d
 p

ro
b

a
b

ili
ty

0 65535

Input GT

Supervised c2GAN

Pixel value
 

Fig. 2. High-fidelity fluorescence image restoration with c2GAN. (a) The input and the output of c2GAN, as well as the results of the supervised 

CNN and corresponding ground truth. (b) Statistical histograms of images in (a). The distribution of c2GAN’s results is in high consistency with 

the ground truth while the image fidelity of supervised CNN is degraded to some extent. In the output of conventional supervised CNN, a certain 
percentage of pixels are saturated (pixel value=65535). 

3.  References 

[1] Y. LeCun, Y. Bengio, and G. Hinton, "Deep learning," Nature 521, 436-444 (2015). 
[2] E. Moen, D. Bannon, T. Kudo, W. Graf, M. Covert, and D. Van Valen, "Deep learning for cellular image analysis," Nat Methods (2019). 

[3] H. Zhao, O. Gallo, I. Frosio, and J. Kautz, "Loss Functions for Image Restoration With Neural Networks," Ieee Trans Comput Im 3, 47-57 
(2017). 

[4] T. Falk, D. Mai, R. Bensch, O. Cicek, A. Abdulkadir, Y. Marrakchi, A. Bohm, J. Deubner, Z. Jackel, K. Seiwald, A. Dovzhenko, O. Tietz, C. 

Dal Bosco, S. Walsh, D. Saltukoglu, T. L. Tay, M. Prinz, K. Palme, M. Simons, I. Diester, T. Brox, and O. Ronneberger, "U-Net: deep 
learning for cell counting, detection, and morphometry," Nat Methods 16, 67-70 (2019). 

[5] M. Weigert, U. Schmidt, T. Boothe, A. Muller, A. Dibrov, A. Jain, B. Wilhelm, D. Schmidt, C. Broaddus, S. Culley, M. Rocha-Martins, F. 

Segovia-Miranda, C. Norden, R. Henriques, M. Zerial, M. Solimena, J. Rink, P. Tomancak, L. Royer, F. Jug, and E. W. Myers, "Content-

aware image restoration: pushing the limits of fluorescence microscopy," Nat Methods 15, 1090-1097 (2018). 

[6] H. D. Wang, Y. Rivenson, Y. Y. Jin, Z. S. Wei, R. Gao, H. Gunaydin, L. A. Bentolila, C. Kural, and A. Ozcan, "Deep learning enables 
cross-modality super-resolution in fluorescence microscopy," Nature Methods 16, 103-+ (2019). 

[7] C. Belthangady and L. A. Royer, "Applications, promises, and pitfalls of deep learning for fluorescence image reconstruction," Nat Methods 
(2019). 

[8] Zhu, J.-Y., Park, T., Isola, P. & Efros, A. A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proc. 

IEEE International Conference on Computer Vision 2223–2232 (IEEE, 2017). 
[9] S. J. Ihle, A. M. Reichmuth, S. Girardin, H. Han, F. Stauffer, A. Bonnin, M. Stampanoni, K. Pattisapu, J. Vörös, and C. Forró, 

"Unsupervised data to content transformation with histogram-matching cycle-consistent generative adversarial networks," Nature Machine 
Intelligence 1, 461-470 (2019). 


